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ABSTRACT: The chemical synthesis of polypeptides involves
stepwise formation of amide bonds on an immobilized solid
support. The high yields required for efficient incorporation of each
individual amino acid in the growing chain are often impacted by
sequence-dependent events such as aggregation. Here, we apply
deep learning over ultraviolet−visible (UV−vis) analytical data
collected from 35 427 individual fluorenylmethyloxycarbonyl
(Fmoc) deprotection reactions performed with an automated
fast-flow peptide synthesizer. The integral, height, and width of
these time-resolved UV−vis deprotection traces indirectly allow for
analysis of the iterative amide coupling cycles on resin. The
computational model maps structural representations of amino acids and peptide sequences to experimental synthesis parameters
and predicts the outcome of deprotection reactions with less than 6% error. Our deep-learning approach enables experimentally
aware computational design for prediction of Fmoc deprotection efficiency and minimization of aggregation events, building the
foundation for real-time optimization of peptide synthesis in flow.

■ INTRODUCTION

Amide bonds play a central role in nature. They covalently link
amino acids in the peptides and proteins involved in every
aspect of life. In addition, amide bond formation is the most
frequently used reaction in medicinal chemistry, and its
preponderance is still increasing.1 It was used at least once
in ∼60% of the medicinal chemistry literature in 2014, and in
∼7.2% of these reports, amide bond formation occurred in the
context of amino acid couplings in solid phase peptide
synthesis (SPPS).1 In SPPS, multiple iterations of amino acid
couplings and deprotections on a solid support enable
elongation of a polypeptide chain.2 By contrast to recombinant
expression, SPPS allows for the incorporation of a virtually
unlimited number of noncanonical amino acids and site-
directed mutations.3 Synthetic peptides and proteins obtained
with SPPS technology are therefore of great therapeutic
interest, but low atom-economy and secondary events on resin,
such as aggregation and aspartimide formation, limit their
current application.4,5 The availability of routine computational
tools to predict and correct these events in real-time would be
a major breakthrough in improving overall synthesis quality of
polypeptides.
Method development and optimization of organic reactions

are labor-intensive and require multiple rounds of trial-and-
error experimentation.6 Flow chemistry offers the possibility to
automate these processes and often improves reaction
outcomes relative to batch methods due to increased heat

and mass transfer. Automation of chemical reactions therefore
leads to enhanced productivity and high reproducibility.7,8 For
example, a modular synthesis platform developed by Burke and
co-workers allows for the rapid synthesis and purification of
various small molecules using bifunctional N-methyliminodi-
acetic acid (MIDA) boronates as building blocks for Suzuki−
Miyaura cross-couplings.9,10 In addition to in-line purification,
data collection from continuous flow systems is enabled by in-
line analysis, which increases mechanistic understanding
through real-time monitoring of intermediates and byproducts
in response to variation of synthesis parameters.11 Building on
similar concepts, Jamison and co-workers developed a
compact, fully integrated, and easily reconfigurable benchtop
system that enables automated optimization of various
chemical transformations using flow chemistry.6 In addition,
we recently demonstrated the advantages of automated fast-
flow peptide synthesis (AFPS) over traditional SPPS
techniques in terms of higher synthetic fidelity, increased
length of the peptide chains accessible, and significant decrease
in synthesis time.12
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Advancements in computational methods allow for the
investigation of large-scale problems and previously inacces-
sible correlations in organic reaction methodology. Improved
algorithms can predict reactivity and plan retrosynthetic routes
from data.13−16 Furthermore, their combination with state-of-
the-art automated experimental platforms can bring us closer
to autonomous discovery. The Jensen and Jamison groups
developed a robotic flow chemistry platform able to plan,
execute, and evaluate new reactions.17 They demonstrated the
capabilities of this setup by designing and conducting the
synthesis of multiple druglike molecules. Because training data
on flow chemistry are scarce, this approach requires
preprocessing batch synthesis data into equivalent flow
parameters. To circumvent this issue and directly build upon
batch chemistry-based literature, Cronin and co-workers
developed the Chemputer, an automated synthesis platform
that mimics batch synthesis.18 Ada is another example of a self-
driving lab for accelerated development of thin-films, based on
ChemOS,19 a software package for autonomous discovery, and
Phoenics,20 a Bayesian optimization algorithm.21 Additional
efforts have utilized data-driven approaches to predict products
and reaction types from reactants and reagents13 and optimize
retrosynthetic routes using Monte Carlo tree search.22 There
have been attempts to optimize reaction conditions using
reinforcement learning and machine learning.23,24 Although
these approaches are able to predict retrosynthesis routes and
optimize the conditions of reactions one at a time, prediction

and optimization of overall synthetic yield for arbitrary new
reactions remain an open challenge.
Access to high-quality, interpretable, and standardized data

sets suitable for machine learning is a current bottleneck as the
literature on chemical reactions is often unstructured, exists in
multiple formats, sometimes behind paywalls, and was
collected on different reaction setups.25 In addition, the
published literature contains partially irreproducible data,
which are difficult to identify a priori.26 Learning based on
data generated from automated experimental platforms could
significantly improve predictions of synthesis outcomes, but
these data sets are usually limited in size.
Here, we demonstrate that a large set of in-line collected

high-quality peptide synthesis data can be leveraged to train
effective deep-learning approaches that predict reaction yield
and in silico optimization of synthesis parameters. A better
understanding of individual reactions on resin could further
improve the synthetic process.12 However, there are 400
possible binary couplings and 20n possible coupling steps for
an n-amino acid polypeptide, considering only the canonical,
proteinogenic amino acids. The growth of the peptide chain on
resin is complicated by additional sequence-dependent events,
such as aggregation.27−29 Predictions of interactions that cause
aggregation and strategies to prevent them are described in the
literature,30−32 but the molecular and structural factors
affecting aggregation during synthesis on the solid support
are not fully elucidated and therefore difficult to predict.
Another layer of complexity is added by the incorporation of

Figure 1. Deep learning enables prediction and optimization of fast-flow peptide synthesis. (A) An automated fast-flow peptide synthesizer is used
for the synthesis of peptides. Each synthesis run delivers UV−vis traces for all coupling and deprotection chemical steps. (B) Deep learning is done
over parametersintegral, width, height, and difference between width and heightcalculated from the deprotection steps in the experimental
data. The model predicts the relative change of deprotection peaks, as a proxy for synthesis success, and aggregation events, based on the difference
between width and height. The difference is calculated by subtracting the percentage values of normalized height from normalized width. (C) The
model is used to predict relative change in deprotection peaks and aggregation for all single-point mutations of the wild-type sequence. Mutants
predicted to be less aggregating and more aggregating than the wild-type sequence are experimentally synthesized and validated.
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noncanonical amino acids or building blocks with uncommon
protecting groups.

■ RESULTS
Automated Fast-Flow Peptide Synthesizer (AFPS)

Gives Access to Highly Reproducible Data. Peptide
synthesis data were generated on a fully automated fast-flow
peptide synthesizer (AFPS) developed in our laboratory which
forms amide bonds orders of magnitude faster than
commercial instruments (Figure 1A).33,34 With this machine,
deprotection of fluorenylmethyloxycarbonyl (Fmoc) groups is
generally quantitative, and the resulting byproduct dibenzo-
fulvene can be detected using an in-line UV−vis detector (310
nm).35,36 These data can be used to indirectly obtain
information on the individual stepwise coupling cycles and
the overall synthesis performance. In contrast to conventional
peptide synthesizers, automated flow synthesis yields addi-
tional direct information on the Fmoc-deprotection steps by
generating a time-dependent UV−vis trace.37,38 The integral
and shape (width, height) of these signals can be used to
identify mass transfer issues during deprotection, which are
interpreted as aggregation on resin.
Over the past years we have systematically improved

synthesis parameters and developed an amino acid-specific
recipe.12 First, we screened various solvents, synthesis
temperatures, coupling and deprotection bases, coupling
agents, and flow rates. We then identified amino acids with
low coupling efficiency and optimized coupling times and
reagents. Using this approach, we defined a recipe that now
allows for the routine synthesis of polypeptides with length

corresponding to single domain proteins (up to 164 amino
acids).12 We envisaged that automated flow peptide synthesis
could be improved even further if we had a better
understanding of sequence-dependent events, e.g., aggregation,
that occur during the process.
The data set obtained from our optimization experiments

contains 35 427 individual, highly reproducible deprotection
steps. Each reaction step is defined by the presynthesized
sequence on the resin (termed “prechain”), the features of the
incoming amino acid, and a set of synthesis parameters. There
are 17 459 unique reaction steps, after removing outliers and
averaging over duplicates (Figure S1 and Section S3.1). The
integral, height, and width of deprotection traces were
normalized to the first coupling step. Across all unique
Fmoc-deprotection steps, the average relative integral was 89%,
and the reproducibility was within 10%. From the statistical
analysis of this high-fidelity data, we identified particularly
challenging binary coupling steps and looked for solutions to
address them. The influence of sequence-specific interactions
on peptide synthesis cannot be addressed through human
intuition alone due to the large combinatorial design space and
overwhelming data set size. In order to understand and predict
how peptide sequence affects synthetic performance, we turned
to deep-learning algorithms (Figure 1B).

Deep Learning on High-Quality Synthesis Data
Allows for Prediction of UV−Vis Deprotection Traces.
Monomers in the prechain and incoming amino acids were
represented using extended-connectivity fingerprints (ECFP,
Figure 2A).39 This topological representation encodes the
molecular graph into a bit-vector of desired length where every

Figure 2. Deep learning predicts near-accurate UV−vis Fmoc deprotection traces. (A) Amino acids are represented using topological fingerprints.
Fmoc- and side-chain protected representations are used for incoming amino acids, while amino acids in the prechain are represented with only
side-chain protection. Amino acid = black, Fmoc = blue, active ester = gray, side-chain protecting group = red. (B) The sequence on the resin is
represented as a matrix of side-chain protected amino acid fingerprints. The order of amino acids in the matrix is the same as the order in the
sequence. (C) Schematic of the machine learning model shows the multiple input and output variables. In the input, prechain and incoming amino
acid representations featurize the chemistry of the reaction, while other variables featurize the synthesis parameterscoupling agent, number of
coupling strokes, temperature of coupling, number of deprotection strokes, flow rate, and temperature of reactor. In the output, integral of the
Fmoc deprotection bands, and their height, width, and difference are used to train the model. The model was trained on 70% of the data set, and its
performance was evaluated on the remaining 30% of the data set. (D) The model predicts the integral for a particular reaction step with error under
4% of the data range on the validation data set. (E) Integral, height, and width obtained from the model and experimental UV−vis deprotection
traces are overlaid for GLP-1 synthesis. The predictions from the model match the experimental values within the error range. GLP-1 was not part
of the training data set.
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feature represents one or more particular substructures.
Common substructures such as the amide backbone, C-
terminal carboxy groups, and N-terminal amines appear in
most bit-vectors, while unique substructures in the side-chains
distinguish the amino acid bit-vectors from one another
(Appendix S1).
All amino acids were represented with explicit protecting

groups, since these can influence their reactivity and
physicochemical properties such as polarity. In the case of
the incoming amino acid, fingerprints were generated from
molecules with Fmoc protecting groups. The prechain was
featurized as a row matrix of ECFP bit-vectors with free amine
groups (Figure 2B). The peptide primary structure is thus
captured by the sequence of fingerprints and each monomer
chemistry by the ECFP bit-vector.
A deep neural network model was trained over the peptide

representation and the synthesis parameters to predict the

integral, height, and width of UV−vis Fmoc deprotection
traces normalized to the first coupling in the peptide synthesis.
These variables quantify the success of each reaction step
(Figure 2C). The reactive structures are represented by the
prechain row matrix and the incoming amino acid bit-vector.
The synthesis parameters include categorical and numerical
features: reactor temperature, flow rate, and coupling-
deprotection variablescoupling agent, preactivation loop
temperature, coupling, and deprotection strokes. The model
architecture first processes individual variables and then
concatenates the outputs of the individual representation-
learning layers, followed by fully connected layers. This allows
the model to process and transform every variable in an
optimal way before combining them.
The model was trained and validated on a random 70:30

split of the available data. For integral, height, and width, the
prediction errors on held out test data are all under 0.1 RMSE

Figure 3. The deep-learning model predicts, interprets, and optimizes aggregation. (A) Predicted difference (width − height) is overlaid on the
calculated difference from the experimentally obtained UV−vis deprotection trace for GLP-1. The predicted difference is within the error for the
experimentally observed difference. Aggregation is defined as the step where the difference between width and height is greater than 20%. (B)
Positive activation gradient map for GLP-1 prechain prior to the addition of third Ala (A18). The mean activation values for individual amino acids
and bit-vectors are shown along respective axes. (C) Positive activation gradient maps averaged over fingerprint indices for GLP-1 and JR-10
mutants show a sharp decrease in aggregation from the negative control (GLP-1, R30S; JR-10, I9L) to the wild-type and the other mutants. The
prechains considered in the analysis are for the known aggregating regions in GLP-1 (addition of third Ala, A18) and JR-10 (addition of second
Thr, T4). The most activated amino acids are Arg, Trp, and Lys in WT GLP-1, and Met and Ile in WT JR-10. (D) Most activated substructures by
amino acid for GLP-1 are shown. Amino acids with aryl groups and bulkier side-chain protecting groups are found to be most activated. The
analysis excluded substructures in the amino acid scaffold, both the amide backbone and the side chains native to the respective amino acid. The
red dot is the node atom, and the black bonds/atoms represent the chemical substructure encoded in the activated fingerprint. (E) Calculated
difference from the experimental synthesis run for predicted sequence analogues of WT GLP-1 and WT JR-10. The analogues are predicted single-
point mutations of the sequenceK28R, W25P, and W25H for GLP-1, and M10K, I9P, and I9R for JR-10. The predicted negative controls are
R30S for GLP-1 and I9L for JR-10. The predicted sequence analogues, except negative controls, are less aggregating at the respective step. Negative
control for GLP-1 is more aggregating than GLP-1 itself. Negative control for JR-10 is less aggregating than JR-10, but more aggregating than the
other analogues. (F) Predicted GLP-1 and JR-10 mutants which were experimentally validated are listed. All mutants predicted using the model
contain the mutation before the aggregating step, i.e., addition of third Ala for GLP-1, and addition of second Thr for JR-10. The in silico generation
of mutants had no such constraints.
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(6% relative to the range of the training data, Figure 2D, Figure
S2 and Table S1). For GLP-1 and other test sequences held
out from the training data set, the UV−vis traces predicted
using the deep-learning model match the experimentally
obtained traces within said uncertainty (Figure 2E, Section
S3.4, Section S4.6).
Deep Learning Predicts and Enables Interpretation

of Aggregation. We predicted sequence-dependent aggrega-
tion using our model. The analysis of previously collected
experimental data12 suggests that certain sequence-dependent
events, which are commonly defined as aggregation, result in a
poor synthetic outcome. These events are characterized by
mass transfer issues and slow reaction kinetics that are reflected
in flattened, wider UV−vis deprotection peaks. We use the
difference of normalized width minus normalized height (W −
H) to quantify such events and define aggregation to have
occurred when this difference is greater than 0.2 for a reaction
step. We used the model trained above to predict W − H
difference directly. The model was able to predict W − H
difference on held out data with an RMSE of 0.13 (5.4%
relative to the data range) (Figure S2 and Table S1) which
allows the identification of aggregation events. For GLP-1,
which was not a part of the training data set, the model is
accurately able to identify the aggregating step, i.e., the
addition of Ala18 (A18) (Figure 3A).
In order to interpret the decision-making process of the

neural network, we trained a minimal model.40 This model was
limited to prechain and incoming amino acid as input and
difference between normalized width and height as output. By
taking the normalized gradient of the neural-network
predictions with respect to each bit-vector index of the input

matrix, it is possible to quantify the contribution of the
particular index toward aggregation. Representing these values
as a heatmap allows visualization of the decision-making
process of the model, and enables identification of features in
the input representation which are responsible for aggregation.
We visualized the gradient activation map at the onset of

aggregation for GLP-1 (Figure 3B). The substructures by
amino acid are ranked from the ones contributing most (red)
to least (blue) toward aggregation. Averaged over the
fingerprint indices, the model predicts that Arg30 (R30) is
the amino acid contributing the most to aggregation, followed
by Trp25 (W25) and Lys28 (K28) (Figure 3C). Noteworthy,
the amino acids that impacted aggregation the most were far
removed from the point of aggregation. Bulkier side-chain
protecting groups such as the aromatic moieties in arginine
(Arg) and tryptophan (Trp), and the tert-butyl protecting
group in lysine (Lys), are the most activated substructures by
amino acid, respectively (Figure 3D). Substructures common
to all amino acids are always present in the fingerprints and
were excluded from the substructure activation analysis.
To gain further insight on how the model learns aggregation,

we interrogated the predictions of the aggregation model using
a reference data set of 8441 natural proteins with 50 amino
acids or fewer from the Protein Data Bank (accessed on April
17, 2020).41 Similar trends were obtained in the activation
analysis of aggregation (Section S6). 45% of the sequences
were predicted to be aggregating, according to our definition of
aggregation. Amino acids in the prechain with aryl groups and
bulkier side-chain protecting groups were found to be most
activated for aggregation (Figure S10 and Table S4). On
average, amino acids closest to the C-terminus are predicted to

Figure 4. Synthesis data analysis identifies areas for further optimization. Histograms showing the comparative distribution of the relative change of
deprotection peak integrals filtered across the entire reaction step data set by (A) coupling agent (HATU, PyAOP), (B) coupling strokes (single,
double), and (C) coupling of serine from the HATU subset with single coupling stroke to the HATU subset with double coupling strokes. The
mean value and the distribution as a whole move toward the ideal relative change of 100% in all the latter cases. The integrals were normalized to
the integral of the preceding reaction step. An integral greater than 100% only indicates that the present reaction was better than the preceding step.
Single corresponds to 520 μL of DIEA, 5.2 mL of amino acid (0.4 M), and 5.2 mL of activator solution (0.38 M); double corresponds to twice the
amount of chemicals as in a single set of coupling strokes. (D) Mean values of amino acid-specific deprotection peak integrals are shown. The
integrals are normalized relative to the previous deprotection peak integrals. (E) Mean values of deprotection peak integrals at different positions
are shown. Residue position preaggregation is the same as the position of the amino acid in the synthesis step. Residue position postaggregation is
the nth synthesis step after the aggregating step. The analysis is based on the optimized recipe for each individual amino acid, except Trp which
needs to be optimized further.
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contribute the most toward aggregation (Figure S11). The
relative contribution from subsequent amino acids decreases
the further their position is in the chain. The results delivered
by our model suggest that aromatic and bulky side-chain
protecting groups are a main prechain structural determinant
of aggregation.
Deep-Learning Model Allows for Sequence Optimi-

zation of “Difficult Peptides” Using Single-Point
Mutations. Single-site mutagenesis coupled with interpreta-
tion of gradient activation maps enable optimization of
synthesis performance (Figure 3C). All possible single-point
mutants of wild-type GLP-1 and JR-10 were computationally
enumerated and ranked by the aggregation model. The
selection of least aggregating sequences was based on predicted
aggregation and gradient activation maps. We observed that in
most cases the mutations of amino acids which were most
activated for aggregation (Figure 3C) led to a decrease in the
predicted aggregation.
From the list of mutants, we selected four sequences

predicted to be less aggregating and one sequence predicted to
be more aggregating than the wild type sequence to evaluate
our predictions experimentally (Figure 3E,F). The exper-
imental traces for the difference between normalized width and
height for the mutants, including the negative control, matched
the predictions of the model within 5% error (RMSE: 0.13).
This outcome validates the accuracy of the model in
minimizing aggregation and its robustness in predicting
negative controls. The reduced aggregation directly translates
into an improved synthesis outcome for the GLP-1 derivatives,
as judged by the purities of the crude peptides evaluated by
analytical HPLC signal integration past cleavage and
deprotection (Section S4.6.1).
The model was trained on a representation that is

transferable across chemical structures, and we therefore
determined if it would be able to predict the synthesis
outcome for unseen building blocks. We therefore synthesized
GLP-1 with backbone-modified glycine and pseudoprolines;
both types of building blocks are commonly used to avoid
aggregation (Table S3). For the pseudoproline building blocks
Fmoc-Ser(t-Bu)-Ser(ΨMe,Me Pro)−OH and Fmoc-Phe-Thr-
(ΨMe,Me pro)−OH, the synthesis outcome was predicted
with high accuracy, whereas prediction for Fmoc-(DMB)Gly−
OH building blocks was less accurate. These experiments show
the potential but also the limitations of the model, as training
on more diverse building blocks will likely improve the ability
to predict synthesis outcome for completely new building
blocks in the future.
Statistical Analysis of AFPS and PDB Data Sets.

Statistical analysis over the entire AFPS data set can inform
future optimization of fast-flow peptide synthesis (Figure 4A−
C). When we compared different synthesis parameters for all
amino acid couplings combined, we noticed that PyAOP
shows improved synthesis outcomes when compared to the
related coupling agent HATU. In addition, extended coupling
times also had a positive effect on the synthesis. The overall
differences for the coupling parameters are small, but these
minor effects add up to have a potentially major detrimental
impact in the synthesis of long peptides, where >99% coupling
efficiency per incorporated amino acid is crucial.
Amino acids coupled under identical coupling conditions

(single coupling with HATU) show diverse histogram profiles
for their relative change in deprotection peak integrals (Figure
S3). Some residues, such as glycine, leucine, and lysine, show

narrow distributions around 100%, whereas alanine, cysteine,
histidine, asparagine, glutamine, arginine, serine, valine,
tryptophan, and threonine show broader distributions. The
latter set of residues in comparison to the former set is more
prone to reduction in deprotection yield and is generally
responsible for the overall decrease in synthesis quality. In our
optimized recipe file, all of these residuesexcept for
tryptophanare already coupled under modified conditions
(Figure S4). To identify additional areas for optimization, we
analyzed average coupling efficiencies for our optimized
synthesis recipe (Figure 4D, Figure S5). It was found that all
amino acids couple with high yields; however, tryptophan,
cysteine, isoleucine, and lysine present opportunities for
improvement.
In addition, we found that aggregation is likely to occur at

any position of the peptide chain more than 4 residues from
the C-terminus, with an increased probability around positions
8−15 from the C-terminus for both experimental AFPS and
predicted PDB data sets (Figures S6 and S8). For this analysis,
we compared all aggregating peptide sequences >20, >25, and
>30 amino acids in length to obtain statistical information. In
addition, we also validated that synthesis outcome is generally
position-independent, except for the very first amino acids that
are coupled to the solid support (Figure 4E). Further, the
relative distributions of amino acids in nonaggregating
sequences and prechains of aggregating sequences were
found to be similar (Figure S9). We therefore conclude that
amide bond formation in flow is amino acid- and sequence-
dependent but generally independent of the position of specific
amino acids in the peptide.

■ DISCUSSION
Deep learning on an automatically collected analytical data set
from an AFPS setup can be used to predict peptide synthesis
and sequence-specific events. Predicting sequence-dependent
SPPS events is crucial for developing more efficient synthesis
protocols. Here, we make a first step toward this goal by using
analytical data from 35 427 individual, highly reproducible
deprotection steps. Our model is able to predict the synthesis
outcome for sequences which are not part of the training data
set. In addition, the sequences of aggregation-prone peptides
were optimized for minimum aggregation using deep learning.
As a first demonstration, we analyzed the synthesis of GLP-1
and JR-10. We predicted single-point mutations and
experimentally validated an improved synthesis outcome as a
result of reduced aggregation. In the future, we intend to
extend this to optimize synthetic accessibility and functionality
together.
Computational analysis and interpretable deep learning can

be used to extract nonobvious or previously hidden
information from a large and complex data set. The general
effect of changing key parameters in the recipe (e.g., coupling
agent, coupling strokes, temperature) was obtained from
statistical analysis of the entire data set, and areas for additional
improvement were identified. Regions prone to aggregation,
which are the source of many deleterious side-reactions, were
predicted with high confidence. Statistical analysis of the
experimental AFPS data set and predicted PDB data set
furthers the hypothesis that aggregation occurs with increased
probability between the 8th and 15th position from the C-
terminus,27 although we also found aggregation at every other
position of the protected peptide chain. We determined that
aggregation does not depend on the position of specific amino
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acids in the sequence. We had already observed previously that
the onset of aggregation can be shifted by increasing the
synthesis temperature,12 and here, we also demonstrate how a
single-point mutation far from the actual predicted location of
aggregation onset can obviate aggregation completely.
Intrigued by these results, we strived to decode main

contributors to aggregation by understanding how the model
predicts these events. Using gradient activation on the deep-
learning model, we determined that residue-specific “activators
for aggregation” are often found at a location in the peptide
chain far from the actual point of aggregation and close to the
C-terminus of the peptide. The latter observation may be a
consequence of SPPS proceeding in all cases from the peptide
C-terminus. Interrogation of the activation maps revealed
sequence-specific amino acids or substructures thereof that are
most likely to cause aggregation. We found that aromatic,
hydrophobic side-chains and protecting groups such as
2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) and
trityl (Trt) increased the probability for aggregation, and
Arg(Pbf), Trp(Boc), His(Trt), Asn(Trt), and Cys(Trt) were
the main contributors (in decreasing order of relative
contributions). This analysis is in line with reports in the
literature stating that hydrophobic amino acids lead to
aggregation.27,30 However, we found aryl-containing residues
and protecting groups to be more activating than t-Bu groups
or aliphatic amino acids.
The tools we developed here are valuable for de novo

computational design and optimization of peptide sequences,
e.g., for personalized medicine. Artificial peptide and protein
sequences are designed de novo to address challenges in
medicine and nanotechnology.42 Most of these biopolymers,
however, are currently produced by recombinant methods.
AFPS can significantly expedite and improve the synthesis
quality of these structures, as already demonstrated in the
context of tumor neoantigen peptides for personalized
immunotherapy and cell-penetrating peptides.43−45 In the
event of an aggregating sequence, we demonstrated that single-
point mutations can avoid aggregation during synthesis.
Introducing point mutations into peptide and protein
sequences is common practice in biology, often to interrogate
function of a specific amino acid. Although it needs to be
evaluated if the mutated sequences retain their biological
function, we demonstrate how this approach can be valuable
for improving the quality of peptide synthesis. In future
developments, homology search can be integrated in the
optimization process of bioactive peptide and protein chains to
inform on mutational tolerance of the sequence.
This method demonstrates how deep learning can be used

to predict and optimize chemical reactions using automated
flow synthesis platforms. The model framework is agnostic of
the experimental instrumentation and can be used in principle
for any flow chemistry reaction setup with capability for in-line
analysis. For polymer addition reactions, such as the synthesis
of polyglycans or antisense oligonucleotides, the prechain and
incoming monomer may be based on the current featurization
framework with appropriate synthesis parameters, and trained
on in-line monitoring parameters such as those obtained using
various analytical methods. The model’s predictive power is
intrinsically linked to the availability of reproducible, stand-
ardized high-quality synthesis data for training. As our data set
continues to grow with every biopolymer that is synthesized on
our AFPS systems, we intend to expand the applicability of our
model to additional reactions and building blocks, e.g.,

noncanonical amino acids or backbone modifications, as
already demonstrated for some new building blocks. In the
future, we hope to make the transition from an amino acid-
based recipe to a sequence-dependent recipe wherein each
amino acid is coupled according to its nature and position in
the peptide chain. We envision that this approach will
ultimately lead to real-time in-line suggestion of synthesis
parameters, a principle envisioned by Erickson as early as
1981.35

■ EXPERIMENTAL SECTION
Automated Flow Peptide Synthesis and UV−Vis Data

Collection. All peptides were synthesized on three automated-
flow systems, which were built in the Pentelute lab and were
described in detail in previous publications.12,33,34 The
automated setup records amino acid sequence, stock solution
type, pump strokes, flow rate, temperatures in heating loops
and at the entrance and exit of the reactor, backpressure, and in
line UV−vis data for every synthesis.
For test syntheses in this paper, synthesis conditions detailed

in Table S2 were used. Capitalized letters refer to L-amino
acids; uncapitalized letters refer to D-amino acids or
uncommon building blocks, which are defined in the SI.
Unless otherwise noted, the following stock solutions were

used for peptide synthesis: Fmoc-protected amino acids
[Fmoc-Ala−OHxH2O, Fmoc-Arg(Pbf)−OH; Fmoc-Asn-
(Trt)−OH; Fmoc-Asp-(Ot-Bu)−OH; Fmoc-Cys(Trt)−OH;
Fmoc-Gln(Trt)−OH; Fmoc-Glu(Ot-Bu)−OH; Fmoc-Gly−
OH; Fmoc-His(Trt)−OH; Fmoc-Ile−OH; Fmoc-Leu−OH;
Fmoc-Lys(Boc)−OH; Fmoc-Met−OH; Fmoc-Phe−OH;
Fmoc-Pro−OH; Fmoc-Ser(But)−OH; Fmoc-Thr(t-Bu)−
OH; Fmoc-Trp(Boc)−OH; Fmoc-Tyr(t-Bu)−OH; Fmoc-
Val−OH] as a 0.40 M stock solution in DMF, activating
agents (HATU and PyAOP) as a 0.38 M stock solution in
DMF, DIEA (undiluted), and deprotection stock solution
(40% piperidine, 2% formic acid, 58% DMF). DMF was
pretreated with AldraAmine trapping agents >24 h before
synthesis. 50−200 mg of H-Rink amide (0.49 and 0.18 mmol/
g loading) and HMPB ChemMatrix polyethylene glycol (0.45
mmol/g loading) resin was used in all experiments in the data
set; details on resin and scale are given for synthesis examples
in the SI.
Unless otherwise noted, a flow rate of 40 mL/min and a

temperature of 90 °C in the loop and 85−90 °C in the reactor
were used. Briefly, two large pumps (50 mL/min pump head)
deliver 400 μL of solution per pump stroke, and a small pump
(5 mL/min pump head) delivers 40 μL of solution per pump
stroke. A standard synthesis cycle involves (a) prewashing of
the resin, (b) iterative coupling, washing, deprotection, and
washing steps per amino acid building block. In the prewashing
step the resin is swollen at elevated temperatures for 60 s at 40
mL/min. The iterative synthesis cycles start with a coupling
step where three HPLC pumps are used: a large pump delivers
the activating agent stock solution; a second large pump
delivers the amino acid stock solution, and a small pump
delivers DIEA. It is important to make sure that all solutions
reach the mixer in the flow setup at the same time to avoid
byproduct formation. The first two pumps are delivering stock
solutions for 8 pumping strokes in order to prime the coupling
agent and amino acid lines before the DIEA pump is started.
The three pumps are then delivering sock solutions together
for a period of 7 pumping strokes. Afterward, the activating
agent pump and the amino acid pump are changed using a

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://dx.doi.org/10.1021/acscentsci.0c00979
ACS Cent. Sci. 2020, 6, 2277−2286

2283

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00979/suppl_file/oc0c00979_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00979/suppl_file/oc0c00979_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.0c00979/suppl_file/oc0c00979_si_001.pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://dx.doi.org/10.1021/acscentsci.0c00979?ref=pdf


rotary valve to select DMF. The three pumps are pumping
together for a final 8 pumping strokes. For the consecutive
washing step, the DIEA pump is stopped, and the other two
pumps continue delivering DMF for another 40 pump strokes.
In the deprotection step, the two large pumps are used, one

delivering DMF and one delivering the deprotection solution
in a 1:1 ratio. The pumps are activated for 13 pump strokes.
Next, the rotary valves select DMF for both pumps, and the
resin is washed for an additional 40 pump strokes. The
coupling−deprotection cycle is repeated for every additional
amino acid.
UV−vis in-line analysis is recorded past the reactor and prior

to waste collection. The UV synthesis data at a wavelength of
310 nm were collected from 35 427 individual deprotection
steps from 1523 unique peptide synthesis experiments on three
AFPS systems. Sequences with canonical amino acids and with
length between 5 and 50 amino acids only were considered in
the making of the data set. The recipe file and AFPS raw file
were analyzed to collect information about the coupling agent,
coupling strokes, coupling temperature, deprotection strokes,
flow rate, and reactor temperature. Integral, width, and height
of the time-resolved traces were obtained using a modified
version of the earlier published code.12

Safety Statement. No unexpected or unusually high safety
hazards were encountered.
Deep Learning and Optimization. Data Preprocessing.

The data set obtained from the AFPS was preprocessed before
analysis (Section S3.1). Two individual sets of normalization,
by the first and previous deprotection step, were performed.
The difference of width and height was calculated from the
normalized traces. With 4 parameters and 2 different types of
normalization, each deprotection step was quantified in terms
of 8 variables. Out of these variables, normalization-specific
sets of 4 parameters were used for different tasks. The analysis
was performed on the parameters normalized by the previous
deprotection step, and the machine learning model was trained
on parameters normalized by first deprotection step.
The data set was trimmed to 28 642 deprotection steps after

removing the outliers. For parameters from UV traces, a cutoff
of 2 standard deviation for integral, width, and height, and 1.5
for difference, was used to filter the data set. Deprotection
steps with HATU and PyAOP as coupling agents; 8 and 21 as
coupling strokes; 9, 13, 20, and 26 as deprotection strokes; and
flow rates of 40 and 80 mL/min were considered in the data
set. After averaging over the traces based on the prechain,
incoming amino acid, and synthesis parameters, there was a
total of 17 459 unique deprotection steps.
Featurization. The prechain and incoming amino acid were

featurized using 128 bit Morgan fingerprint bit-vectors
generated using RDKit (Appendices S1 and S2).46,47 Coupling
agent (HATU, PyAOP), coupling strokes (8, single; 21,
double), deprotection strokes (9, 13, 20, 26), and flow rates
(40, 80 mL/min) were treated as one-hot encoding
representations. A machine variable (AFPS00, AFPS01,
AFPS02) representing the particular setup in the lab on
which the sequence was synthesized was added as a one-hot
encoding. The coupling temperature and reactor temperature
were treated as continuous parameters. All parameters were
normalized to mean 0 and standard deviation 1 before training.
Model Training. The deep-learning model was based on a

multimodal convolutional neural network architecture. The
input parameters included prechain, incoming amino acid,
coupling agent, coupling strokes, deprotection strokes,

coupling temperature, reactor temperature, flow rate, and
machine variable. Different sets of output parameters with
individual and multiple combinations of normalization-specific
parameters were tried. The best performance was obtained
using integral, width, height, and difference normalized by the
first deprotection step. All hyperparameters were optimized
using SigOpt.48 A train-validation split of 70−30 was used for
the training. The model has an RMSE validation loss of 0.52,
0.56, 0.47, and 0.48 for normalized integral, width, height, and
difference, respectively.

Interpretability Using Gradient Activation. Gradient
activation analysis, based on our earlier work, was used to
interpret the decision-making process of the model. A model
with prechain and incoming amino acid features was used for
the analysis. The prechain gradient map was used for analyses
of average of activated bit-vectors and amino acids. The map
obtained from averaging over bit-vectors was used for
interpretation of aggregating positions and optimization of
synthesis success by single-point mutations.

Generation of Mutants for Optimization of Aggregation.
A brute-force approach was used to explore all possible single-
point mutations of the seed sequence. Given the small
sequence space for optimization, less than 1000 for sequences
with 50 or less amino acids, this approach exhaustively
explored the combinatorial space. The predicted trace and
activation map for each mutant were obtained. The lowest
aggregating sequences and the most aggregating sequence (as
negative control) were selected for experimental validation.

Data Availability. The data set, excluding proprietary
sequences, used in the training and analysis of the model has
been provided in the online repository.

Code Availability. All code used for training and
optimization of the model is available at https://github.com/
learningmatter-mit/peptimizer.
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